Quantum Locking
Quantum Locking

“After rescuing his equipment from UK customs, where it had been stuck for several days, Boaz Almog take the stage to demonstrate his remarkable research.

It uses a well-known phenomenon of superconductivity — a state of matter where the electrical resistance drops to zero. Normally, electrons moving through a conductor collide occasionally, losing energy to heat — that is resistance. But in a superconductor, there are no collisions, none at all (this is one of the strange effects of quantum mechanics), and hence no resistance. Additionally, the superconductor expels all magnetic fields, another defining characteristic.

But sometimes strands of magnetic field can get stuck inside a superconductor. In that case, they are quantized: they come in discrete units that behave like particles. He calls them fluxons, because they’re particles of magnetic flux.

Now, if you put the superconductor inside a magnetic field, the material doesn’t like the fluxons to move, because that would create resistance, so the object will “lock” the magnetic fields in place. So Almog can use that to create what he calls “quantum locking.””



TED Blog

Facebook Twitter
Your Name Email Website